

深圳市科锐诗汀科技有限公司

地址: 深圳市宝安区西乡街道宝源路 2004 号中央大道 B座 6I

TEL: 0755-26028990 FAX: 0755-26028992

MP: 13502861415 (微信) Http://www.crystal8058.com

抽速的计算

一、中低真空度要求的抽速计算

例: 2m³的腔体, 要求 10 分钟抽到 5×10-3mbar, 请选择泵组

选泵计算过程:

1, 选择前级泵,这种条件下前级泵一般选一个能在 5 分钟内抽到 50mbar 的泵

泵抽速计算:

$$S = \frac{V}{t_1} \ln \frac{P_0}{P_1}$$

其中: S——泵抽速
V——目标腔体容积 t_1 ——抽

气时间 P_0 ——起始压强 P_1 ——

最后达到的压强

所以:
$$S = \frac{2000}{500 \text{ s}} \ln \frac{1000}{50} = 20 \frac{l}{s} = 72 \text{m}^3/\text{h}$$

选抽速 $100 \text{ m}^3/\text{h}$ 的 Hepta 100 做泵组的前级泵。

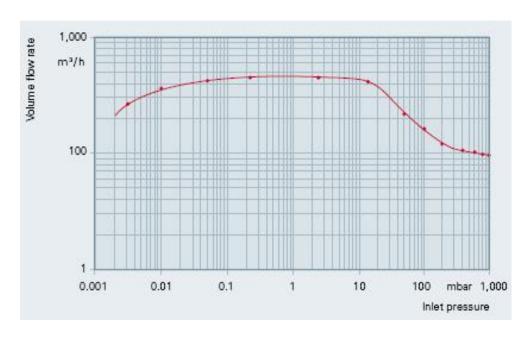
2, 选择罗茨泵

用同样的计算公式:

$$S = \frac{V}{t_1} \ln \frac{P_0}{P_1} = \frac{2000l}{300s} \ln \frac{50}{0.005} = 61.4 \frac{l}{s} = 221 \text{ m}^3/\text{h}$$

选抽速 490m³/h 的 Okta 500 做泵组的罗茨泵

3, 计算所得抽气时间为:


$$t = \frac{V}{S_1} \ln \frac{P_0}{P_1} = \frac{V}{S_2 + \ln P_2} = \frac{2}{100} \ln \frac{1000}{50} + \frac{2}{490} \ln \frac{50}{0.005} = 351s$$

以上都是计算数据,如果要和实际更贴合一些,需要根据泵的

抽速曲线分段积分计算(参考下表),同时要考虑到腔体的漏气, 腔体壁的放气(低真空度条件下可不考虑),液体的气化等等情况。

p _a /mbar	p _v /mbar	S _v /(m³/h)	Q/ (mbar·m³/h)	K _Δ	K _o	S ₁ /(m³/h)	S ₂ /(m³/h)	t/h	t/s
1,000.0000	1,053.00	90.00	94,770.00	1.05		94.77		0.00490	17.66
800.0000	853.00	92.00	78,476.00	1.07		98.10		0.00612	22.04
600.0000	653.00	96.00	62,688.00	1.09		104.48		0.00827	29.79
400.0000	453.00	100.00	45,300.00	1.13		113.25		0.01359	48.93
200.0000	253.00	104.00	26,312.00	1.27		131.56		0.00652	23.45
100.0000	153.00	105.00	16,065.00	1.53	7.00	160.65	321.56	0.00394	14.18
50.0000	103.00	105.00	10,815.00	2.06	13.00	216.30	382.20	0.00608	21.87
14.9841	56.00	110.00	6,160.00	18.70	18.00	2,053.33	411.10	0.00822	29.58
2.5595	10.00	115.00	1,150.00		36.00		449.30	0.01064	38.30
0.2300	1.00	105.00	105.00		50.00		456.52	0.00670	24.13
0.0514	0.30	75.00	22.50		46.00		437.39	0.00813	29.27
0.0099	0.10	37.00	3.70		40.00		375.17	0.00673	24.23
0.0033	0.06	15.00	0.90		39.00		270.42	0.00597	21.51
0.0018	0.05	5.00	0.25		37.00		135.29		

Hena 100 和 Okta 500 泵组的实际抽速曲线如下图:

二、高真空度抽速的计算

高真空度的获得,一般要分以下几个阶段来计算:

- 1, 由前级泵抽到 0.1mbar
- 2, 分子泵抽到 10⁻⁴mbar
- 3, 腔体内表面的放气和密封漏气的抽除

例: 200 升的腔体, 12 小时内要抽到 1×10-8mbar, 请选择泵组

腔体部分参数: 容积: V=0.2 m3

表面积: A=1.88 m²

不锈钢放气速率: q_M=2.7×10⁻⁶ mbar • m³/(s • m²)

密封圈放气速率: q_k=1.2×10⁻⁵ mbar • m³/(s • m²)

密封圈表面积: A_d=0.0204 m²

系统漏率: Q1<1×10⁻⁸ mbar • 1/s

选泵计算过程:

1,选择前级泵, 3分钟内将腔体从大气压抽到 0.1 mbar。

泵抽速计算:

$$S = \frac{V}{t_1} \ln \frac{P_0}{P_1} = \frac{200}{180} \ln \frac{1000}{0.1} = 10.2l / s = 36.84m^3 / h$$

我们选择抽速为 35m³/h 的 Penta 35 做前级泵。

2,选择分子泵,分子泵的选择原则,一般是选抽速为前级泵抽速的 10 倍到 100 倍。我们选择抽速为 685l/s 的 HiPace 700 分子泵。这样第 2 阶段所需时间:

$$t_2 = \frac{V}{S} \ln \frac{P_1}{P_2} = \frac{200}{685} \ln \frac{0.1}{10^{-4}} = 2.02s$$

3, 腔体表面的放气和密封漏气的抽除所需时间

a.抽除腔体表面放气所需时间:

腔体表面的放气率,是一个时间相关的函数,在真空条件下放 气率随时间推移会越来越小。与实际情况比较吻合的计算公式是 t0 时间后,腔体表面的放气率线性减少,一般 t0 按一个小时计算。

$$t_3 = q_{des} \cdot A \cdot \frac{t_0}{S \cdot p_1} = \frac{2.7E - 6 \times 1.88}{685E - 3 \times 1E - 8} \bullet 3600s = 2.67E6s = 742h$$

通过 100 度左右的烘烤可以使腔体表面的放气加快几百上千倍,从而使整个过程缩短到几个小时内。

b, 抽除密封圈放气所需时间:

$$Q_{des} = q_{des} \cdot A \cdot \sqrt{\frac{t_0}{t_A}} = S \cdot p_1 - \Delta \stackrel{\sim}{/} 1-25$$

密封圈 FPM 表面的放气率,也是一个时间相关的函数,但与时间的函数关系是二次方根的关系!主要是由于 FPM 的放气不仅仅是表面,密封圈内部的气体也会扩散出来。随着抽气时间的加长,金属放气和密封圈放气,密封圈放气是主要影响因素,虽然密封圈的面积要小很多!

计算得到: t4=1277h

烘烤也会加快密封圈的放气,但没有烘烤金属那么明显。这就 是为什么橡胶密封圈不适合用于需要超高真空的系统中。 c, 抽除系统渗透和漏气所需时间:

系统漏率 Q1<1× 10^{-8} mbar • 1/s 是很容易达到的,由系统泄露造成的分压: $p = \frac{Q}{S} = \frac{1E-8}{685} = 1.46E-11$ mbar 所以这部分抽气时间我们不与考虑。

以上例子,是基于真空度到 1E-8 mbar 要求的计算演示。得到的结果是抽气时间超过 1 个月! 在实际情况中是不会出现的。

按照以上例子中的系统参数,如果真空度要求是 1E-6 mbar 以下,则实际情况中,分子泵的抽速会再选大一些的,特别是系统中含水汽的,因为现在选用的 Penta 35+HiPace 700 泵组可在 200 秒内抽到 1E-4 mbar,从 1E-4 mbar 到 1E-6 mbar 过程中,就会受到腔体放气和水汽挥发的影响,选用大一些抽速的分子泵,可以减少抽汽时间。

总结

- 1, 中低真空 2m3 左右, 高真空 200L 左右, 可参考以上选用泵组;
- 2, 抽速及时间计算公式: $S = \frac{V}{t_1} \ln \frac{P_0}{P_1}$,由于泵的极限能力问题,计算时,需要分段计算。
- 3, 橡胶密封圈不适合在 1E-7 mbar 真空度以下的系统中使用, 烘 烤可明显加快抽气过程。

以上资料参照普发等真空文章